If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2-4t+650=0
a = -4.9; b = -4; c = +650;
Δ = b2-4ac
Δ = -42-4·(-4.9)·650
Δ = 12756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12756}=\sqrt{4*3189}=\sqrt{4}*\sqrt{3189}=2\sqrt{3189}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{3189}}{2*-4.9}=\frac{4-2\sqrt{3189}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{3189}}{2*-4.9}=\frac{4+2\sqrt{3189}}{-9.8} $
| 4(9x-3)=6(5x+1) | | 12v-7v=10 | | 5*h+2=17 | | -4.9t^2-8t+50=0 | | 5x-29=2x-11 | | x-8/3=×-3/5 | | 7b÷12=4.2.b= | | 10-z=0 | | 3x2=4x-5 | | 33-v=237 | | x−17/20=7/10 | | -7(x+5)=-4x-32 | | x−1720=710 | | 4x+13=97 | | (x–5)3+1=(x+4)(x–4)(x–15) | | -2/1/2x+1/3/5=-1/3/10 | | -21/2x+13/5=-13/10 | | -12x+6=11 | | -3/2=-2/5v-5/3 | | -5/2-2+4=-1/5u-1/2 | | 12y+4=16 | | 5+2x-10(3x+1)=-13 | | (3x+10)=(5x+-10) | | 4m/7=3/14 | | -5+2y/2=3/4 | | 3x-12=x+9 | | 7x-95=13x+67 | | 6(y-8)-2=-5(-5y+9)-9y | | (x-3)^2-10=15 | | 9(2+5y)=18 | | 35a-83=-31 | | 6y-7=41-7y |